

Medida en continuo de la capacidad portante de terraplenes, explanadas, capas de forma y subbalasto

El Portancímetro es un equipo de alto rendimiento, utilizado para la medida de la capacidad portante de terraplenes, explanadas, capas de forma y subbalasto.

Está constituido por una rueda de 400 kg. de peso total con una excéntrica en su interior de 0,30 kg. que realiza un movimiento circular perpendicular a la superficie a auscultar y en sentido contrario al avance del vehículo, con una frecuencia de 35 ciclos por segundo (± 3Hz) y una velocidad de 3,60 km/h. El sistema permite la realización de un ensayo cada 0,80 m. (1.250 medidas por kilómetro), llegando a auscultar aproximadamente 20 km. de explanación por jornada de trabajo.

El software de explotación de datos del equpo permite ofrecer resultados al terminar el ensayo obteniendo conclusiones in situ y acelerando la toma de decisiones en obra.

Funcionamiento

El Portancímetro posee una masa suspendida de 600 kg. que sirve como reacción para realizar la aplicación de la carga a la capa que se quiere auscultar. La fuerza se aplica mediante la rotación de la masa excéntrica y produce un desplazamiento en la rueda de 0,50 mm. La rueda llega a elevarse del suelo y realiza aproximadamente 35 impactos por segundo en la superficie del ensayo.

Para calcular el Módulo de deformación se registra la fuerza que se aplica sobre el material y la deformación que éste sufre, según las siguientes expresiones:

1.- Medida de la Fuerza Total Aplicada sobre la superficie (FTA):

٠	_					
ı	_	=	m	1.1	cos	m
	Ph.	_		UU n	CUS	w

Donde:

F_c: valor fuerza centrifuga aplicada perpendicular a la superficie

m: valor de la masa de la excéntrica

e: distancia del centro de gravedad de la masa al eje de rotación

ω: velocidad angular

φ: ángulo de la excéntrica respecto a la vertical

FTA = $M_1 g + M_0 a_1 + (M_1 - M_0) a_2 + (m e \omega_2 \cos \phi)$

Donde:

FTA: fuerza total aplicada

M.: masa total

Mo: masa rueda vibrante

g: aceleración de la gravedad

a: aceleración de la excéntrica (se mide por acelerómetr

a₂: aceleración del chasis (se mide por acelerómetro)

2.- Medida del Asiento

El asiento producido en el terreno al aplicar la fuerza se obtiene por una medida indirecta del mismo, a partir de la aceleración medida por el acelerómetro ubicado en el eje de la rueda excéntrica. Realizando una doble integración (aceleración \rightarrow velocidad \rightarrow desplazamiento) se obtienen los valores del asiento a lo largo de un ciclo.

3.- Obtención de los Valores de la Capacidad Portante

A partir de los dos puntos anteriores el sistema obtiene los valores de FTA y de asiento de forma puntual a lo largo del tiempo que dura un ciclo de la excéntrica. Cruzando los datos para un mismo tiempo se obtienen parejas de valores de fuerza – asiento que pueden representarse en un gráfico. El cálculo de la capacidad portante se efectúa empleando la recta de regresión que delimitan los puntos entre el 90% y el 30% de la FTA.

Equipamiento

- **Vehículo tractor:** desplaza el equipo y aloja en su interior el sistema informático además de disponer de un generador eléctrico y un grupo hidraúlico.
 - **Cámara frontal panorámica** con coordenadas x, y, z, para la realización de inventario.
- **Remolque:** Es el Portancímetro propiamente dicho. Para la localización y delimitación de los tramos sobre los que se realiza la medida, el equipo dispone de un sistema GPS de posicionamiento y dos sistemas de medida de la distancia:
 - Un **Encoder** sobre la transmisión del vehículo tractor.
 - Un **Radar** para la medida sin contacto.

Ventajas

- Ensayo no destructivo
- Rango de medida muy amplio, pudiéndose medir desde 30 MPa a 350 MPa.
- Capacidad de obtener un alto número de datos (en una jornada puede llegar a medir unos 20 km.).
 - Presentación de resultados en obra.